
OpenAL++ - An object oriented toolkit for
real-time spatial sound

A master thesis by

Tomas Hämälä
at VRlab, Ume̊a

11th February 2002

Abstract

In this report, the development of an object oriented toolkit for real-time
spatial sound is presented. The theory behind spatial sound and speech
recognition is presented. Earlier toolkits were studied, and presented. A
portable toolkit, called OpenAL++, was developed. The Teleface project
was studied and an outline for integration with OpenAL++ was made.

Contents

1 Introduction 1
1.1 Scope . 1
1.2 Problem specification . 2
1.3 The report . 2

2 Previous work 3
2.1 Low level toolkits . 3
2.2 High level toolkits . 3
2.3 Summary of previous work . 4

3 Theory of spatial sound 5
3.1 The basic theories . 5
3.2 Head Related Transfer Functions 8
3.3 The Doppler effect . 8

4 Theory of speech recognition 11

5 Audio libraries used 14
5.1 OpenAL . 14
5.2 PortAudio . 18

6 Implementation 19
6.1 Structure of OpenAL++ . 20

7 Results and Conclusions 23

8 Future developments 24

9 Acknowledgments 24

Appendix

A Design A-1

B Documentation B-1

C A simple example C-1

List of Figures

1 Energy propagating through space 5
2 Energy propagating in one direction through space 6
3 Calculating attenuation for two points 7
4 Example of the Doppler effect 8
5 Stationary source vs. moving source 9
6 Quantization of a sound . 11
7 An example of a HMM . 13
8 Conceptual picture of OpenAL 15
9 Directional sources in OpenAL 16
10 Updater threads . 22

OpenAL++ - An object oriented toolkit for real-time spatial sound

1 Introduction

OpenAL++ is a part of the Avatar project which in turn is a part of the
Vista project[HOL00]. The goal of the Avatar project is to develop an ad-
vanced toolkit for simulating human behaviour in virtual environments. The
toolkit will contain modules for artificial intelligence and character anima-
tion. OpenAL++ will add sound to the project.

Vista - short for Visual Interactive Simulation Tools and Applications -
is a research program that is partly funded by the European Union. Other
projects in Vista are real-time physics with haptic feedback and cluster based
graphics.

1.1 Scope

Sound is an essential part of everyday life for most people. It gives important
information about our surroundings, enhancing the visual sensations from our
eyes and giving us awareness of things that we cannot see. This naturally
means that sound is also important when we try to simulate the real world1.
Adding sound to a simulation will of course enhance the experience, but
more importantly it can give the same kind of information as sounds do in
the real world. For sounds to effectively give this information, they need to
have a position in the simulated world and be affected by properties such as
distance. This kind of sound is called spatial sound.

Making sound spatial can be quite complex, so the preferred method
would be to use an existing SDK2, and there exists several such toolkits. At
VRlab, we have several requirements for the SDK we will use for our projects.
Obviously it must be real-time (due to the interactive nature of many of our
applications), it should be open-source (so that it can be easily extended),
it must be portable (at least between Windows and Linux) and it should
not be too low-level (that is, it should be easy to use). As the SDK is to
be used together with different graphics (and physics etc.) SDK:s, another
requirement is that it is not part of a tightly integrated library containing
other parts than (spatial) sound. Many existing SDK:s were studied (see
section 2), but nothing suitable was found. Hence OpenAL++; our own SDK
for spatial sound, built on OpenAL (see section 5.1 for more information on
OpenAL).

As mentioned above, spatial sound can be used to give hints about the
environment to the user. As such it can be used in real-time, interactive

1For the importance of sound in virtual environments, see [LAR01]
2Software Development Kit - a library of functions etc.

1

Tomas Hämälä

applications that take place in a virtual environments, like games and VR3

applications.

1.2 Problem specification

The purpose of this project is to develop an object oriented SDK for handling
real-time spatial sound. The SDK should be portable, easy to use, well
documented and easily extensible.

Among the capabilities should be:

• Creation of sound sources, and setting their positions as well as other
attributes.

• Playing sounds through the sources. These sounds could be pre-recorded
or streamed through a microphone or through network sockets.

• Have some kind of mechanism to enhance scalability, in the sense of
being able to play many sound sources simultaneously.

In a later stage, techniques from the Teleface project[AGE99] could be
integrated with the developed SDK. Teleface is a way to extract facial ex-
pressions from sound data - something that would fit in to a virtual world
with avatars.

1.3 The report

The remaining chapters of this report are about OpenAL++; its past, present
and future. Previous work describes a number of earlier spatial sound API:s
and SDK:s, and the reasons for not choosing them. It also has sections for
OpenAL and PortAudio, the sound SDK:s used. The chapter Theory of
spatial sound explains the underlying physics, terms and formulas used when
working with spatial sound, and Theory of speech recognition will talk about
techniques for analyzing speech. Implementation is a description of the work
done and Results and conclusions is about how well the goals were met and
discusses what else worked well or not so well. Finally, Future developments
is about possible future additions to OpenAL++.

3Virtual Reality

2

OpenAL++ - An object oriented toolkit for real-time spatial sound

2 Previous work

Real-time simulation of spatial sound is a large research area, and several
API4:s and SDK:s already exist. For different reasons they were not used,
and these reasons are described in this chapter. The last two sections will
describe OpenAL and PortAudio; the two sound SDK:s that were used.

2.1 Low level toolkits

DirectX is a popular SDK made by Microsoft[MIC01]. It has sound com-
ponents for handling spatial sound. However, apart from the fact that it is
only available for Windows, it is of quite low level. In fact, it is used as the
underlying layer for OpenAL (below) in Windows. Another disadvantage of
DirectX is that it is closed source.

SoundRegistry is a thin wrapper5 for OpenAL[BRÄ01]. It is almost as
low level as OpenAL, which means that it is no significant advantage to use
it over OpenAL. SoundRegistry is open source.

The SoundTerrain API is a SDK for the MacOS[OLL01]. It is quite
similar to OpenAL, but has some added features. The most important of
these are that when there are not enough resources for all the sounds to play,
SoundTerrain will automatically choose which sounds to play (depending on
proximity and loudness), and that the user can set the maximum amount of
CPU time SoundTerrain is allowed to use. The latter can be used to limit the
amount of time taken by the sound simulation, so that other (time-critical)
parts of an application can finish in time.

OpenAL is a low level, open source audio library[LOK00]. It is very
portable, but still in development, which means that not everything works
on the supported platforms. It is this SDK that was chosen as a core for
our SDK, hence the name OpenAL++. More information on OpenAL is
available in section 5.1.

2.2 High level toolkits

VESS (Virtual Environment Software Sandbox) is a SDK for virtual envi-
ronments. It has support for graphics, audio and collision detection, as well
as several kinds of input and output devices[UCF01]. The SDK is also quite

4Application Programmers Interface, the same thing as SDK
5A wrapper is a layer around an underlying library. It is used to hide some of the

details of the library and add functionality, thereby bringing it up to a higher level. A
“thin wrapper” means that the wrapper does not do much more work than the underlying
library.

3

Tomas Hämälä

well documented. VESS has a good API for sound, but it is to integrated
with the rest of the VESS package. What we wanted was something that
could easily be combined with different graphics (and physics etc.) API:s,
like OpenSceneGraph[OSF01] and Vortex[CRI01], for instance.

SGI:s Cosmo3D has the same problem; it is an integrated graphics/sound
API. Furthermore it is no longer officially supported by SGI[ECK98].

A company called Aureal had an object oriented API called A3D[AUR00].
It implemented many very good features - HRTF (see chapter 3), wavetrac-
ing6, volumetric sound etc. The drawbacks are that it is only implemented
for Windows, and that it is not supported anymore: Aureal went out of busi-
ness and was bought by Creative, who do not seem to want to proceed the
development of A3D.

2.3 Summary of previous work

SDK Level Portability Stand-alone Open Source
DirectX Low Windows only No No
SoundRegistry Low As OpenAL Yes Yes
SoundTerrain Low MacOS only Yes Yes
OpenAL Low Most platforms Yes Yes
VESS High Unix/Linux No Yes
Cosmo3D High NT, SGI No Yes
A3D High Windows only Yes No

As can be seen in the table, OpenAL satisfies most of our requirements,
which is why it was chosen as the core for our SDK.

6A method of “following” the sound waves through space. Using this, objects that
are between the sound source and the listener can be found. Any such sources would be
said to occlude the source, and the sound would be muted. Sound reflections on different
surfaces could also be calculated.

4

OpenAL++ - An object oriented toolkit for real-time spatial sound

Figure 1: Energy travels in all directions from a point in space. At the
distance d, the total area is 4 ∗ π ∗ d2.

3 Theory of spatial sound

This chapter will explain the underlying physics of spatial audio, and also
different ways to do the audio simulation. For basic physics like the following,
many sources exist. One good is [HEN01].

3.1 The basic theories

An object that vibrates creates waves that travel through the air. These
waves are actually compressions and rarefactions of air, and can also be seen
as energy. The amount of energy that is emitted per unit of time is called
power. It makes more sense to measure how much energy that is in one spot
at a specified time, than to measure the total amount of energy, and therefore
intensity is used. Intensity is the amount of energy through an area per unit
of time, that is power per area unit. When something emits a sound, the
energy spreads out in all directions (not counting reflections), which means
that the further away from the object one gets, the larger the total area will
be. This in turn, means that the intensity decreases as the distance to the
source of the energy (in this case sound) increases. The area at a certain
distance from a point in space is that of a sphere, that is 4 ∗ π ∗ d2, where
d is the distance (see figure 1). Because the intensity is the energy through
an area per unit of time, it is inversely proportional to the area. This means
that the intensity is inversely proportional to the distance squared. This is
known as the inverse square law of physics.

The inverse square law can be used to derive the formula for attenuation7

7How much a sound is muted depending on distance

5

Tomas Hämälä

Figure 2: If energy only travels in one direction, the area at distance d is
proportional to the area of a sphere with radius d. This means that the area
is also proportional to d2.

in OpenAL (section 5.1). Just taking the basic law would give us:

Iattenuated =
Ioriginal
d2

(1)

Where I is intensity, and d is distance. However, for practical reasons, Ope-
nAL uses gain (or amplitude) instead of intensity, and intensity is propor-

tional to the square of the gain. This gives us G2
attenuated =

G2
original

d2 , which

can be simplified to Gattenuated =
Goriginal

d
.

The formula still has the problem that it is a division by zero if d is zero.
Because we know that d (the distance) cannot be negative, all that has to
be done to avoid this is to add one to the denominator.

Gattenuated =
Goriginal

1 + d
(2)

To gain a little more control, two parameters are added: Rolloff factor (F)
and reference distance (R). Reference distance is the distance at which the
listener will experience Goriginal and Rolloff factor is a factor to increase or
decrease attenuation (see [LOK00]).

Gattenuated =
Goriginal

1 + F ∗ d−R
R

(3)

The above reasoning also works even if energy just propagates in one direc-
tion, because the area is proportional to the distance squared even in this
case (see figure 2).

6

OpenAL++ - An object oriented toolkit for real-time spatial sound

Figure 3: The distance from the sound to R is shorter than the distance to
L. Hence, the sound will be played at a louder volume in the right channel,
giving the illusion the sound is to the right.

So if one now calculated the attenuation based on the distance between
the listener and the source, one would get a sense of distance in the simula-
tion: A nearby source would be louder than a far-away. What still would be
missing is a sense of direction. To achieve this, two points in space could be
used instead of the single point the listener occupies (see figure 3). One point,
called L, is placed a short distance to the left of the listener and another,
called R, is placed the same distance to the right of the listener. This, of
course, demands that the listener has an orientation in space (instead of just
a position). Then attenuation is calculated separately for R and L. Sound
is then played in the left speaker with the attenuation of L and in the right
speaker with the attenuation of R. Doing this means we get a left/right di-
rectional sense. To get a sense for whether a sound is in front of or behind,
four speakers or a different method than simple attenuation (like HRTF, see
below) would have to be used.

The difference in intensity for a sound when reaching one ear compared to
the other is called Interaural Intensity Difference (IID). The other main clue
that humans use to locate sounds, is called Interaural Time Difference (ITD).
The differences in distance from the sound source to a listeners ears means
that the sound will reach one ear slightly before the other. The difference in
time can easily be calculated, as long as the speed of sound in the medium
in question is known (see [WEN92] for information on IID and ITD). IID
and ITD do not explain how it is possible to hear whether a sound source is
in front of or behind a listener, or how differences in elevation can be heard.
To solve these problems - at least to some degree - other methods have to be
used.

7

Tomas Hämälä

Figure 4: A sound source (S) moves towards a listener (L1) and away from
another (L2). L1 will perceive an apparent frequency that is higher than the
real frequency of S, and L2 will perceive an apparent frequency that is lower.

3.2 Head Related Transfer Functions

The use of Head Related Transfer Functions, or HRTF, is a slightly more
complex method that is not used in OpenAL. It was developed by NASA
in conjunction with Aureal, and much research has been done by those and
other companies (see, for example, [WEN92]). The differences in the sound
that reaches the left and right ear, respectively, are used by the brain to
localize the source of the sound. A first step in calculating how the sound
will appear when the source is in different directions from the listener is
to place a microphone in each ear of a subject. Then a sound is played
at different positions around the subject, and recorded in the microphones.
By analyzing the differences in the played and recorded sound, filters can
be created that can simulate how the sound will be affected for sources in
different directions. These filters, the HRTF, are then applied in real-time
to sounds to spatialize them.

The HRTF are actually different for different people, due to differently
shaped ears and heads, but non-personal HRTF:s seem to work - although
not as well as personal ones. More details on this can be found in [WEN92].

3.3 The Doppler effect

Another phenomenon of sound that is quite common for spatial sound toolk-
its to simulate, is the Doppler effect. It is an apparent shift in frequency, and
appears when a sound source moves relative to a listener or vice versa. If
the movement is such that the distance gets smaller, the apparent frequency
is higher than the real frequency, and if the movement is the other way,

8

OpenAL++ - An object oriented toolkit for real-time spatial sound

Figure 5: The source in A is stationary, and the source in B is moving to
the left. They both have the same frequency: 1/3 vibrations per time step.
Time starts with the uppermost row, and goes down one time step per frame.
The compressions created by the sound are shown as they propagate through
space. As can be seen, the compressions to the right of the moving source are
closer to each other than the compressions to the left of the source. Therefore,
the apparent frequency is higher to the right of the moving source than to
the left of it.

the apparent frequency is lower than the real frequency (see figure 4). The
following reasoning explains why this happens:

A sound source will create a number of compressions equal to its fre-
quency per second8. If the sound source is stationary, the distance will be
the same between any two compressions; this distance is known as the wave
length. If the sound source is moving, on the other hand, the wave length will
be different in different directions: Because the source is moving after the
compressions in one direction and away from them in the opposite direction,
the wave length will be shorter in the first and longer in the latter (see figure
5). A shorter wave length is the same as a higher frequency. The relationship
between wave length and frequency is f = v

λ
, where f is the frequency, v is

the speed of sound and λ is the wave length.
There following formulas describe the Doppler effect. In them f ′ is the

apparent frequency, f is the real frequency, s is the speed of sound, ss is the
speed of the source and sl is the speed of the listener. Both ss and sl are
speeds along the line defined by the positions of the source and the listener.

f ′ = f ∗ s

s± ss
(4)

8To simplify the discussion, a simple, sinusoidal sound wave of constant frequency is
used here.

9

Tomas Hämälä

and

f ′ = f ∗ s± sl
s

(5)

Equation 4 is for a moving source, and the ±ss is ss if the source is moving
away from the listener and −ss if it is moving towards the listener. If the
listener is moving, equation 5 is used. In this case ±sl is positive when
moving towards source, and negative otherwise.

If, instead of using the speed, a signed value would be used, the ± would
not be necessary. This can be accomplished by projecting the velocity vec-
tor(s) onto the vector V̄ = S − L (where S is the position of the source and
L is the position of the listener). The projected vector is called V̄ ′, and the
signed value that is needed is v in V̄ = v ∗ V̄ ′. If this signed value is called
vs for the source and vl for the listener, we get (with equations 4 and 5,
respectively):

f ′ = f ∗ s

s+ vs
(6)

and

f ′ = f ∗ s− vl
s

(7)

The two formulas can be combined to handle cases when both the source and
the listener move. This formula still works even if source and/or listener is
not moving:

f ′ = f ∗ s

s+ vs
∗ s− vl

s
= f ∗ s− vl

s+ vs
(8)

In OpenAL, this formula is used, with the addition of a factor (D) that can
be used to exaggerate or deemphasize the Doppler effect (see [LOK00]):

f ′ = D ∗ f ∗ s− vl
s+ vs

(9)

10

OpenAL++ - An object oriented toolkit for real-time spatial sound

Figure 6: An analog signal (1) is sampled to a digital signal (2). The signal
is divided into (overlapping) frames, and the most important features of each
frame is stored (3). The reason for the overlap is to avoid loss of features on
the boundaries. Then each feature is labeled based on its features (4).

4 Theory of speech recognition

What will be presented here is not so much a way of recognizing what is said
as a way of recognizing the phonemes that compose the speech. Recognizing
the phonemes is (usually) the first step in computing what is said, though.
A phoneme is the smallest part of speech, it is one of the about 40-50 sounds
that build up our languages. Of course, not all phonemes appear in all
languages. Having the phonemes for a sentence could of course be used for
speech recognition, but also for making a synthetic face move so it appears
that it is uttering the sentence. But more on this later.

Doing any kind of analysis directly on the signal (that is the sound) can
be quite complex, simply because the sheer amount of data. Because of this,
the signal is usually divided into frames of about 10 milliseconds each. The
n most important features of each frame are picked out, and then these are
quantized. Quantization means that the n-dimensional space that the vector
of features can be seen as points in, is divided into regions and labeled. All
points in the same region gets the same label. These labels can be seen
as a compressed version of the signal, containing only those features of the
original signal that are important for our purposes. We call these labels L1,
L2, .. , Lm, where m is the number of regions (see figure 6).

To get from a signal to its phonemes, we need a way to calculate P (s|p),
where s is a signal and p a phoneme. This should be read as “the probability
that p gives s.” That is, we have the signal (or rather a part of it) and
want to know the probability that it corresponds to a particular phoneme.
Knowing the probabilities for all phonemes means that it is “only” a matter

11

Tomas Hämälä

of assigning the most probable phoneme to the signal. To find it, Hidden
Markov Models can be used.

In [RUS95] the following is said about Markov Models:

In general, a Markov Model is a way of describing a process that
goes through a series of states. The model describes all the pos-
sible paths through the state space and assigns a probability to
each one. The probability of transitioning from the current state
to another one depends only on the current state, not on any
prior part of the path.

Hidden Markov Models (HMM) are the same, except for that each state has
probabilities for every possible output, not just the state changes, and the
same output can appear in more than one state. For every phoneme that is
to be recognized, one HMM is needed. To find out what phoneme a sequence
of quantization labels corresponds to, the following steps need to be done:

1. For every path that gives the sequence:

2. Multiply the probability of the path with the probability that the path
generates the sequence.

3. For every HMM:

4. Sum the probabilities calculated above belonging to the HMM.

What is being calculated here is actually P (s|p), which means that the HMM
with the highest probability corresponds to the most likely phoneme. See
figure 7 for an example. In the Teleface project[AGE99] this method was
used to find the phonemes, and then map them to facial expressions of a
virtual face. Another method that was used in Teleface is Artificial Neural
Networks (ANN), below.

To find the parameters for the HMM:s, some kind of training method-
like the forward-backward algorithm - is used. This will not be discussed
further here.

Artificial Neural Networks are based on how the brain processes informa-
tion. They consist of a number of units (or artificial neurons) that take a
number of inputs, process them and produce a single output. The processing
takes place in a function that, based on learned parameters, combine the in-
put into an output. The parameters are learned through a process of sending
input to the neurons and giving feedback on the output. If the output is not
right, the feedback should cause the function to change its behaviour. This
has many uses, but in this case it was trained to map the audio input to
parameters for describing facial expressions (see section 8).

12

OpenAL++ - An object oriented toolkit for real-time spatial sound

0.1

L5: 0.4
L6: 0.3
L9: 0.3

0.90.3L3: 0.3
L6: 0.1
L9: 0.6

0.70.5

L1: 0.2
L6: 0.4
L9: 0.4

0.5

Figure 7: Given that p is the phoneme corresponding to the HMM, above, and
that the signal s is quantized as q=[L1,L6,L6,L5]. There are three possible
paths that generate that sequence. The probability that q corresponds to p
as P (q|p) = (0.2 ∗ 0.4 ∗ 0.1 ∗ 0.4) ∗ (0.5 ∗ 0.5 ∗ 0.3 ∗ 0.9) + (0.2 ∗ 0.1 ∗ 0.1 ∗ 0.4) ∗
(0.5 ∗ 0.7 ∗ 0.3 ∗ 0.9) + (0.2 ∗ 0.1 ∗ 0.3 ∗ 0.4) ∗ (0.5 ∗ 0.3 ∗ 0.1 ∗ 0.9) = 0.000324

13

Tomas Hämälä

5 Audio libraries used

The audio libraries used in OpenAL++ are presented in this section.

5.1 OpenAL

OpenAL - or the Open Audio Library - is an open, cross-platform API for
interactive, spatial audio. The companies involved, at the time of writing,
are Creative Labs and Loki Entertainment Software. The primary audience
for OpenAL is game and application developers that use portable standards,
like the graphics API OpenGL, for their applications.

The API is designed to have a similar look to OpenGL (in coding style
and conventions). As it is primarily made to generate audio in a simulated
3D space, it does not support functions such as panning. The following table
summarizes the capabilities of OpenAL:

OpenAL can handle: OpenAL cannot handle:
Distance based attenuation Occlusions
Directional sounds Reflections
Reverb (on some platforms) ITD
Doppler effects HRTF
Pitch changes Volumetric sound

Direct control over sound channels
See chapter 3 for more information on the above terms.
OpenAL has five main components:

• A context for the sound simulation.

• A device to output sound on. This is associated to the context, and
every context must have a device.

• A listener. This is a static object, so there is one listener in every con-
text. This has both position and orientation in the virtual environment,
as well as other parameters such as velocity.

• A number of sources. These have position, direction and other param-
eters such as velocity and pitch. Sources are created on demand.

• A number of buffers. Each one of these is associated with a number of
sources. Buffers are created when needed.

See figure 8 for a conceptual picture of OpenAL.
Before using any other parts of OpenAL, a context and its device must be

allocated, and when sound simulation is done, the device and context should

14

OpenAL++ - An object oriented toolkit for real-time spatial sound

Context

Device Listener

Context

Device Listener

Source

Source

Source
Source

Source

Source

Source

Buffer

Buffer

Buffer

Buffer

Buffer

Figure 8: As can be seen from this conceptual picture of OpenAL, several
contexts can exist (though only one can be active at a time). Every context
has a listener and a device. A number of sources can also exist in a context.
Buffers are not context specific and can be shared between contexts as well
as sources.

15

Tomas Hämälä

Direction

i

o

A

B

C

Figure 9: Example of a directional source in OpenAL. i is the inner cone
angle and o is the outer cone angle. In area A, the source is at full gain and
in area C it is at outer cone gain. In area B the gain is interpolated between
full gain and outer cone gain.

be freed. These steps can be handled by utility functions in the ALUT (AL
Utility Library), but then some control is lost. Using ALUT means that it
is not possible to set refresh rate, output frequency and whether the audio
context should be synchronous (with graphics) or not. It also means that
explicit control over devices is lost, so the default device will be used, with
default settings.

ALUT can also be used to load files in WAV format9, which can then
be loaded into buffers. The buffers are then associated with sources. The
sources have a number of attributes, like position and velocity, which will
affect how it will sound when played. The source attributes can be found in
table 1.

As mentioned above, every context has a listener. Listener attributes can
be found in table 2. Buffers only have the attributes frequency, size and data
- with the obvious uses.

Perhaps the most important part of OpenAL’s simulation of sound is

9A popular sound storage format

16

OpenAL++ - An object oriented toolkit for real-time spatial sound

Attribute Comment
Position This can be absolute or relative to the listener
Velocity In vector form. Used for Doppler calculations
Direction For directional sources (see fig. 9)
Inner cone angle For directional sources
Outer cone angle For directional sources
Outer cone gain For directional sources
Pitch
Gain
Max gain Can be used to clamp the gain (after attenuation)
Min gain Can be used to clamp the gain (after attenuation)
Rolloff factor Used in attenuation calculations
Reference distance Used in attenuation calculations
Looping

Table 1: Source attributes in OpenAL

Attribute Comment
Position Absolute
Velocity As for sources
Orientation Up and at vectors (orthogonal to each other)
Gain The “global” gain.

Table 2: Listener attributes in OpenAL

17

Tomas Hämälä

that it does attenuation. This means that it calculates how much a sound
should be muted because of the distance between the source and the listener.
Combine this with different calculations for two (or more) channels based on
the orientation on the listener, and you get a (primitive) way of simulating
distance and direction to sounds. OpenAL’s way of calculating attenuation
is based on the inverse square law of physics (see chapter 3 Theory of spatial
sound, equation 3).

5.2 PortAudio

PortAudio is a portable toolkit for audio. It does not have any support
for spatial sound, but rather supports more basic audio input and output.
Unlike the very rudimentary audio capture support of OpenAL, PortAudio
has good support for querying available input devices and their capabilities.
For that reason PortAudio was selected for use in the input device part of
OpenAL++. However, because of the very modular design of OpenAL++,
it could easily be adapted to not use PortAudio if better input support is
implemented in OpenAL.

18

OpenAL++ - An object oriented toolkit for real-time spatial sound

6 Implementation

The development of OpenAL++ started with studies on existing audio toolk-
its (OpenAL, VESS, SoundRegistry, SoundTerrain, DirectX audio compo-
nents, A3D, Cosmo3D audio components). This was an attempt to learn
from earlier work - both mistakes and successes in design. After this the de-
sign phase started. Over three weeks were committed to design, during which
the class diagram was revised several times, and tests were made on paper.
To do the diagrams, I used Dia[LAR00] to begin with, but later moved to
Rational Rose[RAT02] to get code generation capabilities.

Several design choices had to be made before reaching the final stage.
The most important were:

• The decision to keep the logical structure - Listener, Source, Buffer and
Environment - of OpenAL.

• Sources and other objects in the simulated world could have been stored
in a scene graph structure10, but we decided not to do this. The primary
advantages of having a scene graph are that occlusions and reflections
would be easier to implement and that integration with graphics might
be simpler. However, because OpenAL does not support it, we chose
not to implement any kind of occlusion. Also, matrices are the best
way to store the transformations in a scene graph, but OpenAL does
not use them.

• To achieve better scalability (in number of sounds played simultane-
ously), GroupSource was added. An alternative would have been to
have some kind of built in system for selecting which sources to play.

During the work I found a few things that did not work too well. These
were:

• The design of the classes for streaming sound. This was a result of a few
things: I was not certain at the time of design on how to do streaming
with OpenAL (as OpenAL is still in development, there were a couple
of alternatives). I also did not know how to handle input devices; as
was mentioned above, OpenAL does not have much support for audio
input, and I had initially some problems with getting OpenAL to work

10A hierarchical way of structuring three-dimensional data, usually graphics. A scene
graph has nodes of several types; primarily transformations and geometries. To render
the scene, the graph is traversed, doing transformations and drawing geometries as the
corresponding nodes are visited. This technique can also be extended to physics and
spatial sound.

19

Tomas Hämälä

with PortAudio. Because of this, some changes in this part of the
design had to be made during implementation.

• The current version of OpenAL++ is not totally portable. This is
because of the differences in how the (supposedly portable) OpenAL,
ALUT and PortAudio libraries work on different platforms. So ev-
erything in OpenAL++ does not work the same in Linux and Win-
dows - the main difference is in the streaming functions (streaming
through network sockets on Windows might give a distorted sound,
while streaming from a microphone might not work in Linux at all).
Also, no testing has been done on other platforms than these two.

The main thing that worked well was the overall design. Much work was
put into designing - over three weeks were spent on this, and much time
on studies of other API:s - and the implementation did not begin until the
major part of the design was done. This led to a fast implementation of
the basic functionality of OpenAL++, with very few problems (except those
noted above).

During the work on OpenAL++ a few bugs in were found OpenAL -
bugs which had to be fixed to get all the wanted functionality. They have
been reported and fixed, but there is still some work to do to get to a stable,
totally portable OpenAL.

6.1 Structure of OpenAL++

OpenAL++ is built using three other libraries: OpenAL, CommonC++[SUG00]
and PortAudio[BUR01]. OpenAL is, of course, the foundation and what gives
most of the sound capabilities of OpenAL++. PortAudio takes care of sound
capture - input from different devices - which is one thing OpenAL does not
handle well. CommonC++ is used to get portable support for threads and
sockets.

An object oriented approach was used to build OpenAL++. It uses
virtual base classes to take care of initialization. This means that little
or no explicit initialization is necessary, with the exception of reverb. The
reason reverb needs explicit initialization is partly that it is an extension, and
therefore should not be initialized unless it is to be used, and partly because
it is not available on all platforms.

The classes a programmer will use follow the same structure as OpenAL:
The sound scene is divided into Listener, AudioEnvironment, Source(s) and
SoundData11. In OpenAL++ it is also possible to create several Listeners

11corresponding to OpenAL buffers

20

OpenAL++ - An object oriented toolkit for real-time spatial sound

and quickly switch between them.
The AudioEnvironment class is used for setting global parameters - like

Doppler settings and global volume. The Listener class takes care of listener
position and orientation. Note that none of these have to be instantiated; if
they are not, default values are set for them.

A sound source can be either a Source - for playing one sound - or a
GroupSource - for mixing several sounds together. The GroupSource class
can be used to enhance scalability; on some platforms - like Windows - the
maximum number of sources is dependent on the hardware and usually is
something like 32. Using GroupSource, several sounds - preferably such that
have static positions in space relative to each other - can be mixed into one
source, thereby freeing resources to other sounds.

SoundData can be of two different types: Sample and Stream. Sample
is just an ordinary sound sample, loaded from disc. Stream is some kind of
streamed sound, either NetStream - a stream through a socket - or InputDe-
vice - some kind of input device, a microphone for example. To accomplish
streaming, double buffering is used. The following algorithm describes the
process:

1. Queue two buffers in the source.

2. Wait for new data to arrive.

3. Wait for OpenAL to process one of the buffers.

4. Unqueue the processed buffer.

5. Fill the buffer with the new data.

6. Queue the buffer.

7. Goto 2.

As long as a suitable buffer size (depending on sampling rate etc.) is
chosen, no glitches in sound should be heard12. This is because two buffers
are used, so one buffer can be updated while the other one is playing. Every
stream has its own thread for doing the above process (see figure 10).

A NetStream uses a UDP socket for the sound and, optionally, a TCP
socket for control messages. The control messages are, at the moment, only
sample frequency, message size and a message for stopping communication.
They are entirely one way, from the sender of the audio stream to the receiver
of it.

12Notice that some implementations of OpenAL might have some problems with glitches
between queued buffers

21

Tomas Hämälä

Application

OpenAL++ interface

Stream updaters

Main thread
of execution

Separate threads
for updaters

Figure 10: OpenAL++ uses separate threads for updating streams. These
are handled invisibly to the user of the SDK.

22

OpenAL++ - An object oriented toolkit for real-time spatial sound

7 Results and Conclusions

The major goals of OpenAL++ were scalability, portability and ease of use.
It should also be well documented. These goals were reached in varying
degrees. The project certainly is well documented, as Doxygen[VAN02] was
used as part of the implementation process. It is also very easy to use: a
simple scene can be set up with a few lines of code, with no initialization or
exit code. More complex things, like streaming data from a microphone or
through sockets, can also be achieved easily.

The goal of portability was not a total success - although the basic func-
tionality should be the same in Windows and Linux, some things might
differ, because of the different ways OpenAL works on different platforms.
The scalability aspect might not be handled as good as one would want it
to. Group sources certainly enhance scalability, but they demand some work
from the user. Furthermore, group sources only help to reduce the load on
the system by reducing the number of playing sources - they do not reduce
the number of allocated sources. This can be a problem on platforms where
the number of allocated sources is very limited. An automatic way to select
which sources to simulate properly would certainly be easier for the user,
but would be hard to implement because how the selection process should
work depends on the application. Also, such a selection mechanism would
be better implemented in a lower level (that is in OpenAL).

23

Tomas Hämälä

8 Future developments

At a later stage, techniques developed in the Teleface project of KTH could
be added to OpenAL++. The methods of the Teleface project are used to
analyse an audio stream - interpreted as speech - and get the corresponding
lip movements from it. This analysis is done by using either Hidden Markov
Models or Artificial Neural Networks.

This could be very useful in a virtual environment. For example a partici-
pant in the world could use a microphone to talk to others in the environment.
OpenAL++ would make his voice come from the position of his avatar, and
Teleface technology could make the lips of his avatar move in a convincing
way. This would, apart from being more realistic, be good for the hearing
impaired. According to studies (on hearing impaired people) reported in
[AGE99], intelligibility was increased from 33.7% for audio only to 54.0%
with an artificial face with lip movements.

There is, however, at least one problem with using this with OpenAL++:
OpenAL does not have any direct way to query the position that is being
played at the moment, nor what the sound data looks like at that position.
One possible solution to this would be to have very small segments of sound
data that are queued. OpenAL could then be queried about how many seg-
ments have been played, and thus one would know which segment is currently
being played. Assuming the programmer has saved the queued data some-
where, he could find the right segment in that data and use it for the analysis.
As this should be independent of attenuation, the original data can be used.
As long as no pitch changes are applied to the sound, this should work fine,
and even in that case, it would not be very hard to (at least) approximate
the changes.

9 Acknowledgments

The author wishes to thank
The people on the OpenAL mailing list, for fast and helpful answers,

especially Joe Valenzuela - the maintainer of the Linux version of OpenAL.
And, of course, my supervisor Anders Backman.

24

OpenAL++ - An object oriented toolkit for real-time spatial sound

References

[AGE99] Agelfors, Eva <eva@speech.kth.se> et. al : Synthetic visual speech
driven from auditory speech, 1999

[AUR00] Aureal Inc.: A3D 3.0 API Reference Guide (2000)

[BRÄ01] Brändle, Christian <christian.braendle@fhs-hagenberg.ac.at>,
Bailer, Werner <werner.bailer@fhs-hagenberg.ac.at>:
SoundRegistry, 2001-11-12 <http://www.fhs-
hagenberg.ac.at/staff/haller/openal/SoundRegistryC.zip> (2002-
01-10)

[BUR01] Burk, Phil <philburk@softsynth.com>: PortAudio - Portable Au-
dio Library, 2001-11-29 <http://www.portaudio.com/> (2001-12-
13)

[CRI01] Critical Mass Labs: Vortex, 2001-05-15 <http://www.cm-
labs.com/products/vortex/> (2002-01-14)

[ECK98] Eckel, George: Cosmo 3D Programmer’s Guide, 1998
<http://techpubs.sgi.com/library/manuals/3000/007-3445-
002/pdf/007-3445-002.pdf> (2002-01-15)

[HEN01] Henderson, Tom <thenderson@glenbrook.k12.il.us>: The
Physics Classroom - Sound Waves and Music, 2001-02-19
<http://www.glenbrook.k12.il.us/gbssci/phys/Class/sound/soundtoc.html>
(2001-12-01)

[HOL00] Holmlund, Kenneth <kenneth@hpc2n.umu.se>: Vista, 2000-05-15
<http://www.vrlab.umu.se/forskning/vista.shtml> (2001-12-01)

[LAR00] Larsson, Alexander <alla@lysator.liu.se>: Dia a drawing program,
2000-02-29 <http://www.lysator.liu.se/ alla/dia/dia.html> (2002-
01-10)

[LAR01] Larsson, Pontus <pontus.larsson@ta.chalmers.se>, Västfjäll,
Daniel and Kleiner, Mendel: Do we really live in a silent
world? - The (mis)use of audio in virtual enviroments, 2001-10-04
<http://vrlcb.sm.chalmers.se/conference/pdfs/21%20larsson.pdf>
(2002-01-15)

[LOK00] Loki Entertainment Software <info@openal.org>: Ope-
nAL — Open Source Audio Library, 2000-11-04
<http://www.openal.org/home/> (2002-01-10)

25

Tomas Hämälä

[MIC01] Microsoft corporation: About Di-
rectX - Microsoft DirectX, 2001-11-01
<http://www.microsoft.com/directx/homeuser/aboutdx.asp>
(2002-01-10)

[OLL01] Ollman, Ian <iano@cco.caltech.edu>: SoundTerrain, 2001-01-01
<http://alienorb.com/SoundTerrain/> (2001-12-19)

[OSF01] Osfield, Robert <robert@openscenegraph.com>: Open Scene
Graph, 2001-12-30 <http://www.openscenegraph.org/> (2002-01-
14)

[RAT02] Rational Software: Rational Rose, 2002
<http://www.rational.com/products/rose> (2002-01-13)

[RUS95] Russell, Stuart and Norvig, Peter: Artificial Intelligence - A mod-
ern approach, chapter 24.7 Speech Recognition, 1995, Prentice hall

[SUG00] Sugar, David <dyfet@ostel.com>: Common C++ -
A GNU Portable Application Framework, 2000-04-30
<http://cplusplus.sourceforge.net/> (2001-12-13)

[UCF01] University of Central Florida: Virtual Environment Software Sand-
box, 2001-08-01 <http://vess.ist.ucf.edu/> (2002-01-10)

[VAN02] van Heesch, Dimitri <dimitri@stack.nl>: Doxygen, 2002-01-05
<http://www.doxygen.org/> (2002-01-10)

[WEN92] Wenzel, Elizabeth M. <bwenzel@mail.arc.nasa.gov>: Localization
in Virtual Acoustic Displays, Presence, volume 1, number 1, pp.
80-107, 1992

26

OpenAL++ - An object oriented toolkit for real-time spatial sound

A Design

AudioBase
(virtual)

AudioEnviroment

SoundData
(virtual)

PositionedObject
(virtual)

Listener SourceBase
(virtual)

SourceGroupSource

NetStream

Stream
(virtual)

Sample

InputDevice

A-1 1

Tomas Hämälä

AudioBase Virtual base class. Takes care of initialization and shutdown.
(page B-3)

AudioEnvironment Class for global parameters, such as volume, Doppler
factor etc. (page B-4)

PositionedObject Virtual base class for listeners and sources. (page B-8)

Listener Class for listeners. (page B-10)

SourceBase Base class for sources (GroupSource and Source). (page B-13)

GroupSource Class for mixing together several sources into one. (page
B-23)

Source Class for sources. (page B-25)

SoundData Base class for sounds. (page B-29)

Sample Class for loading sampled sound files. (page B-30)

Stream Base class for streamed sounds. (page B-31)

NetStream Class for sounds streamed through network sockets.(page B-34)

InputDevice Class for sounds streamed from an input device (a microphone
for example). (page B-33)

2 A-2

OpenAL++ - An object oriented toolkit for real-time spatial sound

Error
(virtual)

FatalError FileError

InitError MemoryError

NameError ValueError

StreamUpdater

DeviceUpdater NetUpdater

A-3 3

Tomas Hämälä

Error Base class for errors that are thrown by OpenAL++. (page B-35)

FatalError Error caused by bugs (in OpenAL++ or one of the libraries it
uses), corrupted memory etc. (page B-36)

FileError Caused by wrong permissions, missing files etc. (page B-37)

InitError Caused by trying to do things without proper initialization, or
failure in initialization. (page B-38)

MemoryError Caused by insufficient memory etc. (page B-38)

NameError Caused by invalid OpenAL identifiers. (page B-39)

ValueError Caused by values out of range etc. (page B-40)

–

StreamUpdater Threaded base class for updating streams.

DeviceUpdater Updater for devices (like microphones).

NetUpdater Updater for streaming through network sockets.

4 A-4

OpenAL++ - An object oriented toolkit for real-time spatial sound

B Documentation

Large parts of this documentation is based on the latex code automatically
generated by Doxygen.

B.1 Requirements

To use the OpenAL++ SDK, three libraries are needed:

• OpenAL. This can be downloaded from at <http://www.openal.org>.
It can also be acquired through CVS or downloaded as precompiled
binaries; for information on this, check the mentioned URL.

• CommonC++. At least version 1.9 is needed.
Check <http://cplusplus.sourceforge.net/> for information on down-
loading.

• PortAudio. For downloads, check<http://www.portaudio.com/>. Note
that it is possible to compile OpenAL++ without this, if audio capture
is not needed. The files inputdevice.* and deviceupdater.* should then
be left out of the compile.

B.2 Installation

Unfortunately, no automatic installation exists at this moment. In a Unix
environment (like Linux), the following steps should be done:

1. Download the OpenAL++ source package. Uncompress it if necessary.

2. Enter its directory (alpp).

3. Type make.

4. The library files are in ./lib. Copy these to the appropriate place (for
example: cp lib/lib* /usr/local/lib).

5. The include files should be put in a place that is in your include path
(for example:
mkdir /usr/local/include/alpp; cp include/*.h /usr/local/include/alpp).

It should then be possible to compile an openalpp program with the flag
-lopenalpp.

In windows, do the first two steps above. Then open openalpp.dsw (in
the alpp directory) with Visual C++, and build the library. The lib-file will

B-1 1

Tomas Hämälä

appear under Debug or Release, depending on which mode it was compiled
in. Copy this to the appropriate place, and do the same with the include
files (under include).

B.3 OpenAL++ Hierarchical index

Only classes that can be used by the SDK user will be documented here13.

openalpp::AudioBase B-3

openalpp::AudioEnvironment B-4

openalpp::PositionedObject B-8

openalpp::Listener B-10

openalpp::SourceBase B-13

openalpp::GroupSource B-23

openalpp::Source B-25

openalpp::SoundData B-29

openalpp::Sample B-30

openalpp::Stream B-31

openalpp::InputDevice B-33

openalpp::NetStream B-34

openalpp::Error B-35

openalpp::FatalError B-36

openalpp::FileError B-37

openalpp::InitError B-38

openalpp::MemoryError B-38

13virtual base classes for these are also documented

2 B-2

OpenAL++ - An object oriented toolkit for real-time spatial sound

openalpp::NameError B-39

openalpp::ValueError B-40

B.4 openalpp::AudioBase Class Reference

Base class for environment, listener and source classes.
#include <audiobase.h>

Protected Methods

• AudioBase (int frequency=-1, int refresh=-1, int synchronous=-1)
throw (InitError)

Constructor.

• virtual ∼AudioBase ()

Destructor.

Static Protected Attributes

• bool reverbinitiated

Flag for whether reverb has been initiated.

• void(∗ alReverbScale)(ALuint sid, ALfloat param)

Set reverb scale.

• void(∗ alReverbDelay)(ALuint sid, ALfloat param)

Set reverb delay.

B.4.1 Detailed Description

Base class for environment, listener and source classes.
Takes care of initialisation/shutdown of anything necessary (e.g. ALut)

Constructor & Destructor Documentation

openalpp::AudioBase::AudioBase (int frequency = -1, int refresh
= -1, int synchronous = -1) throw (InitError) [protected]

Constructor.

B-3 3

Tomas Hämälä

Parameters:
frequency is the output frequency, in Hz.

refresh is the refresh rate, in Hz.

synchronous is a flag for syncronous context. Values <0 indicates that
the default should be used.

Member Data Documentation

void(∗ openalpp::AudioBase::alReverbDelay)(ALuint sid, ALfloat
param) [static, protected]

Set reverb delay.

This pointer will be set by AudioEnvironment::InitiateReverb()

Parameters:
sid is the OpenAL name for the source

param is the reverb delay. Range [0.0,2.0].

void(∗ openalpp::AudioBase::alReverbScale)(ALuint sid, ALfloat
param) [static, protected]

Set reverb scale.

This pointer will be set by AudioEnvironment::InitiateReverb()

Parameters:
sid is the OpenAL name for the source

param is the reverb scale. Range [0.0,1.0].

bool openalpp::AudioBase::reverbinitiated [static, protected]

Flag for whether reverb has been initiated.

Reverb can be initiated with AudioEnvironment::InitiateReverb() The
documentation for this class was generated from the following file:

• audiobase.h

B.5 openalpp::AudioEnvironment Class Reference

Class for setting global parameters.

#include <audioenvironment.h>

4 B-4

OpenAL++ - An object oriented toolkit for real-time spatial sound

Public Methods

• AudioEnvironment () throw (InitError)

Constructor.

• AudioEnvironment (int frequency, int refresh, bool synchronous)
throw (InitError)

Constructor.

• AudioEnvironment (int frequency, int refresh=-1) throw (InitError)

Constructor.

• void SetSoundSpeed (float speed) throw (ValueError,FatalError)

Sets the speed of sound in the environment.

• float GetSoundSpeed () throw (FatalError)

Get the speed of sound in the environment.

• void SetDopplerFactor (float factor) throw (ValueError,FatalError)

Sets the Doppler factor.

• float GetDopplerFactor () throw (FatalError)

Gets the Doppler factor.

• void SetGain (float gain)

Sets global gain (volume).

• float GetGain () throw (FatalError)

Gets the global gain.

• void SetDistanceModel (DistanceModel model) throw (FatalError)

Sets the distance model used in attenuation calculations.

• DistanceModel GetDistanceModel () throw (FatalError)

B-5 5

Tomas Hämälä

Gets the distance model used in attenuation calculations.

• void InitiateReverb () throw (InitError)

Initiates Loki’s reverb implementation.

B.5.1 Detailed Description

Class for setting global parameters.
This doesn’t have to be instantiated if one does not need to set global

parameters.

Constructor & Destructor Documentation

openalpp::AudioEnvironment::AudioEnvironment (int frequency, int
refresh, bool synchronous) throw (InitError)

Constructor.
The parameters are ignored if this isn’t the first object to be instatiated

of the AudioBase (p. 3) descendants.

Parameters:
frequency is the playing frequency of the environment (in Hz)

refresh is the refresh rate of the environment (in Hz)

synchronous is true if the environment is synchronous

openalpp::AudioEnvironment::AudioEnvironment (int frequency, int
refresh = -1) throw (bf InitError)

Constructor.
The parameters are ignored if this isn’t the first object to be instatiated

of the AudioBase (p. 3) descendants.

Parameters:
frequency is the playing frequency of the environment (in Hz)

refresh is the refresh rate of the environment (in Hz)

Member Function Documentation

DistanceModel openalpp::AudioEnvironment::GetDistanceModel ()
throw (FatalError)

Gets the distance model used in attenuation calculations.

Returns:
the model.

6 B-6

OpenAL++ - An object oriented toolkit for real-time spatial sound

float openalpp::AudioEnvironment::GetDopplerFactor () throw (Fatal-
Error)

Gets the Doppler factor.

Returns:
Doppler factor.

float openalpp::AudioEnvironment::GetGain () throw (FatalError)
Gets the global gain.

Returns:
global gain

float openalpp::AudioEnvironment::GetSoundSpeed () throw (Fatal-
Error)

Get the speed of sound in the environment.

Returns:
speed of sound in length units per second.

void openalpp::AudioEnvironment::SetDistanceModel (DistanceModel
model) throw (FatalError)

Sets the distance model used in attenuation calculations.

Parameters:
model is one of: None, InverseDistance, InverseDistanceClamped.

void openalpp::AudioEnvironment::SetDopplerFactor (float factor)
throw (ValueError, FatalError)

Sets the Doppler factor.
This can be used to exaggerate, deemphasize or completely turn off the

doppler effect.

Parameters:
factor has a default value of one.

void openalpp::AudioEnvironment::SetGain (float gain)
Sets global gain (volume).
The volume a source will be played at will be multiplied by this after the

attenuation calculations. Note: In todays’s implementation on Linux, gain is
clamped to [0.0,1.0]. This will be changed in future releases of OpenAL.

Parameters:
gain is the gain [0.0,...

B-7 7

Tomas Hämälä

void openalpp::AudioEnvironment::SetSoundSpeed (float speed) throw
(ValueError,FatalError)

Sets the speed of sound in the environment.

This is used in doppler calculations.

Parameters:
speed is the speed of sound in length units per second.

The documentation for this class was generated from the following file:

• audioenvironment.h

B.6 openalpp::PositionedObject Class Reference

Virtual base class for positioned objects.

#include <positionedobject.h>

Public Methods

• virtual void SetPosition (float x, float y, float z)=0

Set position.

• virtual void GetPosition (float &x, float &y, float &z) const=0

Get position.

• virtual void SetVelocity (float vx, float vy, float vz)=0

Set velocity.

• virtual void GetVelocity (float &vx, float &vy, float &vz) const=0

Get velocity.

B.6.1 Detailed Description

Virtual base class for positioned objects.

(I.e. listeners and sources).

8 B-8

OpenAL++ - An object oriented toolkit for real-time spatial sound

Member Function Documentation

virtual void openalpp::PositionedObject::GetPosition (float & x,
float & y, float & em z) const [pure virtual]

Get position.

Parameters:
x x coordinate.

y y coordinate.

z z coordinate.

Reimplemented in openalpp::Listener (p. 11), and openalpp::Source-
Base (p. 16). virtual void openalpp::PositionedObject::GetVelocity
(float & vx, float & vy, float & vz) const [pure virtual]

Get velocity.

Parameters:
vx x member of velocity vector.

vy y member of velocity vector.

vz z member of velocity vector.

Reimplemented in openalpp::Listener (p. 11), and openalpp::Source-
Base (p. 16). virtual void openalpp::PositionedObject::SetPosition
(float x, float y, float z) [pure virtual]

Set position.

Parameters:
x x coordinate.

y y coordinate.

z z coordinate.

Reimplemented in openalpp::Listener (p. 11), and openalpp::Source-
Base (p. 16). virtual void openalpp::PositionedObject::SetVelocity
(float vx, float vy, float vz) [pure virtual]

Set velocity.

Parameters:
vx x member of velocity vector.

vy y member of velocity vector.

vz z member of velocity vector.

Reimplemented in openalpp::Listener (p. 11), and openalpp::Source-
Base (p. 16).

The documentation for this class was generated from the following file:

• positionedobject.h

B-9 9

Tomas Hämälä

B.7 openalpp::Listener Class Reference

Class for listeners.
#include <listener.h>

Public Methods

• Listener ()

Constructor.

• ∼Listener ()

Destructor.

• Listener (const Listener &listener)

Copy constructor.

• Listener (float x, float y, float z, float directionx, float directiony, float
directionz, float upx, float upy, float upz)

Constructor.

• Listener (float x, float y, float z)

Constructor.

• void Select ()

Select this listener.

• bool IsSelected ()

Check if this listener is currently selected.

• void SetOrientation (float directionx, float directiony, float direc-
tionz, float upx, float upy, float upz)

Set the current orientation of this listener.

• void GetOrientation (float &directionx, float &directiony, float &di-
rectionz, float &upx, float &upy, float &upz) const

Get the current orientation of this listener.

• Listener & operator= (const Listener &listener)

10 B-10

OpenAL++ - An object oriented toolkit for real-time spatial sound

Assignment operator.

• void SetPosition (float x, float y, float z)

Inherited from PositionedObject (p. 8).

• void GetPosition (float &x, float &y, float &z) const

Inherited from PositionedObject (p. 8).

• void SetVelocity (float vx, float vy, float vz)

Inherited from PositionedObject (p. 8).

• void GetVelocity (float &vx, float &vy, float &vz) const

Inherited from PositionedObject (p. 8).

B.7.1 Detailed Description

Class for listeners.

Constructor & Destructor Documentation

openalpp::Listener::Listener ()
Constructor.
Creates the listener at the default position. openalpp::Listener::Listener

(float x, float y, float z, float directionx, float directiony, float di-
rectionz, float upx, float upy, float upz)

Constructor.
Creates the listener at the specified position and orientation.

Parameters:
x x coordinate

y y coordinate

z z coordinate

directionx x value of the direction vector

directiony y value of the direction vector

directionz z value of the direction vector

upx x value of the up vector

upy y value of the up vector

B-11 11

Tomas Hämälä

upz z value of the up vector

openalpp::Listener::Listener (float x, float y, float z)
Constructor.
Creates the listener at the specified position.

Parameters:
x x coordinate

y y coordinate

z z coordinate

Member Function Documentation

void openalpp::Listener::GetOrientation (float & directionx, float
& directiony, float & directionz, float & upx, float & upy, float &
upz) const

Get the current orientation of this listener.

Parameters:
directionx x value of the direction vector

directiony y value of the direction vector

directionz z value of the direction vector

upx x value of the up vector

upy y value of the up vector

upz z value of the up vector

bool openalpp::Listener::IsSelected ()
Check if this listener is currently selected.

Returns:
true if this listener is selected, false otherwise.

void openalpp::Listener::SetOrientation (float directionx, float di-
rectiony, float dir ectionz, float upx, float upy, float upz) Set the
current orientation of this listener.

Parameters:
directionx x value of the direction vector

directiony y value of the direction vector

directionz z value of the direction vector

12 B-12

OpenAL++ - An object oriented toolkit for real-time spatial sound

upx x value of the up vector

upy y value of the up vector

upz z value of the up vector

Listener& openalpp::Listener::operator= (const Listener & listener)
Assignment operator.

Parameters:
listener is the object to make a copy of.

The documentation for this class was generated from the following file:

• listener.h

B.8 openalpp::SourceBase Class Reference

Base class for sources.
#include <sourcebase.h>

Public Methods

• void Play ()

Play the source.

• void Pause ()

Pause the source.

• void Stop ()

Stop the source.

• void Rewind ()

Rewind the source.

• SourceState GetState () const

Get the current state.

• void SetLooping (bool loop=true)

Turn on/off looping.

B-13 13

Tomas Hämälä

• bool IsLooping () const

Check whether the source is looping.

• void SetDirection (float directionx, float directiony, float directionz)

Sets the direction of the source.

• void GetDirection (float &directionx, float &directiony, float &direc-
tionz) const

Gets the direction of the source.

• void MakeOmniDirectional ()

Makes the source omni-directional.

• void SetSoundCone (float innerangle, float outerangle=360.0, float
outergain=0.0)

Sets the sound cone parameters for a directional sound source.

• void GetSoundCone (float &innerangle, float &outerangle, float &out-
ergain) const

Gets the sound cone parameters.

• void SetGain (float gain)

Sets gain (volume).

• float GetGain () const

Gets the gain (volume).

• void SetMinMaxGain (float min=0.0, float max=1.0)

Sets maximum and minimum gain this source will be played at.

• void GetMinMaxGain (float &min, float &max) const

Gets maximum and minumum gain.

• void SetAmbient (bool ambient=true)

Makes the source ambient (or makes it stop being ambient).

• bool IsAmbient () const

14 B-14

OpenAL++ - An object oriented toolkit for real-time spatial sound

Check if the source is ambient.

• void SetReferenceDistance (float distance=1.0)

Sets the reference distance for this source.

• float GetReferenceDistance () const

Gets the reference distance.

• void SetMaxDistance (float distance)

Sets the maximum distance.

• float GetMaxDistance () const

Gets the maximum distance.

• void SetRolloffFactor (float factor=1.0)

Sets the roll-off factor.

• float GetRolloffFactor () const

Gets the roll-off factor.

• void SetPitch (float pitch=1.0)

Sets the pitch.

• float GetPitch () const

Gets the pitch.

• void SetReverbScale (float scale) throw (InitError,ValueError)

Set reverb scale for this source.

• void SetReverbDelay (float delay) throw (InitError,ValueError)

Set reverb delay for this source.

• float GetReverbDelay () throw (InitError)

Get reverb delay for this source.

• float GetReverbScale () throw (InitError)

Get reverb scale for this source.

B-15 15

Tomas Hämälä

• ALuint Link (const SourceBase &source) throw (MemoryError)

Link this source to another.

• void Unlink (const SourceBase &source) throw (NameError)

Unlink this source from another.

• void Unlink (const ALuint name) throw (NameError)

Unlink this source from another.

• void UnlinkAll ()

Unlink all sources from this.

• ALuint GetAlSource () const

Returns the OpenAL name of the source.

• void SetPosition (float x, float y, float z)

Inherited from PositionedObject (p. 8).

• void GetPosition (float &x, float &y, float &z) const

Inherited from PositionedObject (p. 8).

• void SetVelocity (float vx, float vy, float vz)

Inherited from PositionedObject (p. 8).

• void GetVelocity (float &vx, float &vy, float &vz) const

Inherited from PositionedObject (p. 8).

• SourceBase & operator= (const SourceBase &sourcebase)

Assignment operator.

• ∼SourceBase ()

Destructor.

16 B-16

OpenAL++ - An object oriented toolkit for real-time spatial sound

Protected Methods

• SourceBase () throw (MemoryError,NameError)

Constructor.

• SourceBase (float x, float y, float z) throw (MemoryError,Name-
Error)

Constructor.

• SourceBase (const SourceBase &sourcebase)

Copy constructor.

Protected Attributes

• ALuint sourcename

OpenAL name for this source.

B.8.1 Detailed Description

Base class for sources.

This class holds functions for playing, setting position etc. However, it
cannot be instantiated, instead a source of either type (GroupSource (p. 23)
or Source (p. 25)) should be created.

Constructor & Destructor Documentation

openalpp::SourceBase::SourceBase (float x, float y, float z) throw
(MemoryError,NameError) [protected]

Constructor.

Parameters:
x x coordinate.

y y coordinate.

z z coordinate.

B-17 17

Tomas Hämälä

Member Function Documentation

ALuint openalpp::SourceBase::GetAlSource () const
Returns the OpenAL name of the source.
Can be used to directly modify the source with OpenAL functions.

Returns:
Identifier for the source.

void openalpp::SourceBase::GetDirection (float & directionx, float
& directiony, float & directionz) const

Gets the direction of the source.

Parameters:
direction x x value of the direction vector.

direction y y value of the direction vector.

direction z z value of the direction vector.

float openalpp::SourceBase::GetGain () const
Gets the gain (volume).

Returns:
gain.

float openalpp::SourceBase::GetMaxDistance () const
Gets the maximum distance.

Returns:
maximum distance.

void openalpp::SourceBase::GetMinMaxGain (float & min, float &
max) const

Gets maximum and minumum gain.

Parameters:
min is minimum gain.

max is maximum gain.

float openalpp::SourceBase::GetPitch () const
Gets the pitch.

Returns:
pitch.

18 B-18

OpenAL++ - An object oriented toolkit for real-time spatial sound

float openalpp::SourceBase::GetReferenceDistance () const
Gets the reference distance.

Returns:
reference distance.

float openalpp::SourceBase::GetReverbDelay () throw (InitError)
Get reverb delay for this source.

Returns:
the delay.

float openalpp::SourceBase::GetReverbScale () throw (InitError)
Get reverb scale for this source.

Returns:
the scale.

float openalpp::SourceBase::GetRolloffFactor () const
Gets the roll-off factor.

Returns:
rolloff factor.

void openalpp::SourceBase::GetSoundCone (float & innerangle, float
& outerangle, floa t & outergain) const

Gets the sound cone parameters.

Parameters:
innerangle specifies the inner cone.

outerangle specifies the outer cone.

outergain specifies the gain outside the outer cone.

SourceState openalpp::SourceBase::GetState () const
Get the current state.

Returns:
one of Initial,Playing,Paused,Stopped

bool openalpp::SourceBase::IsAmbient () const
Check if the source is ambient.

Returns:
true if the source is ambient, false otherwise.

B-19 19

Tomas Hämälä

bool openalpp::SourceBase::IsLooping () const
Check whether the source is looping.

Returns:
true if it’s looping, false otherwise.

ALuint openalpp::SourceBase::Link (const SourceBase & source)
throw (MemoryError)

Link this source to another.
This causes calls to Play() (p. 13), Pause() (p. 13), Stop() (p. 13) and

Rewind() (p. 13) (on this source) t o be applied to all sources this has been
linked to, synchronously.

Parameters:
source is the source to link to.

Returns:
identifier for the linked source. This is also the OpenAL name for it.

void openalpp::SourceBase::MakeOmniDirectional ()
Makes the source omni-directional.
The same effect can be achieved by calling SetDirection(0,0,0) void openalpp::Source-

Base::SetAmbient (bool ambient = true)
Makes the source ambient (or makes it stop being ambient).
This function will change the source’s position, direction and roll-off

factor.

Parameters:
ambient is true if the source should be ambient, false otherwise.

void openalpp::SourceBase::SetDirection (float directionx, float di-
rectiony, float directionz)

Sets the direction of the source.

Parameters:
direction x x value of the direction vector.

direction y y value of the direction vector.

direction z z value of the direction vector.

void openalpp::SourceBase::SetGain (float gain)
Sets gain (volume).
The volume a source will be played at will be multiplied by this after the

attenuation calculations. Note: In todays’s implementation on Linux, gain is
clamped to [0.0,1.0]. This will be changed in future releases of OpenAL.

20 B-20

OpenAL++ - An object oriented toolkit for real-time spatial sound

Parameters:
gain is the gain [0.0,...

void openalpp::SourceBase::SetLooping (bool loop = true)
Turn on/off looping.

Parameters:
loop is true if the source should loop, false otherwise.

void openalpp::SourceBase::SetMaxDistance (float distance)
Sets the maximum distance.
This is used in attenuation calculations, if the distance model is Inverse-

DistanceClamped.

Parameters:
distance is the maximum distance.

void openalpp::SourceBase::SetMinMaxGain (float min = 0.0, float
max = 1.0)

Sets maximum and minimum gain this source will be played at.
I.e. the gain will be clamped to these values.

Parameters:
min is minimum gain.

max is maximum gain.

void openalpp::SourceBase::SetPitch (float pitch = 1.0)
Sets the pitch.
1.0 is normal. Each reduction by 50% equals a reduction by one oc-

tave.

Parameters:
pitch is the pitch (0.0,1.0].

void openalpp::SourceBase::SetReferenceDistance (float distance
= 1.0)

Sets the reference distance for this source.
The reference distance is used in attenuation calculations.

Parameters:
distance is the reference distance.

void openalpp::SourceBase::SetReverbDelay (float delay) throw (Init-
Error,Value -Error) Set reverb delay for this source.

AudioEnvironment::InitiateReverb() must be called before using this. This
is how many seconds back in time the echo will be.

B-21 21

Tomas Hämälä

Parameters:
delay is the delay [0.0-2.0] in seconds.

void openalpp::SourceBase::SetReverbScale (float scale) throw (Init-
Error,Value -Error)

Set reverb scale for this source.
This is simply the scale of the ”echo.” AudioEnvironment::InitiateReverb()

must be called before this.

Parameters:
scale is the reverb scale [0.0-1.0].

void openalpp::SourceBase::SetRolloffFactor (float factor = 1.0)
Sets the roll-off factor.
This is used in distance attenuation calculations.

Parameters:
factor is the rolloff factor.

void openalpp::SourceBase::SetSoundCone (float innerangle, float
outerangle = 360.0, fl oat outergain = 0.0)

Sets the sound cone parameters for a directional sound source.
This function has no effect on omni-directional sources. Two cones, with

the top at the source, and turned the same direction as the source, are defined
by this. Inside the inner cone (specified by innerangle), sound will be played
at full volume (attenuated by distance), and outside the outer cone (specified
b y outerangle) sound will be played at the volume specified by outergain.
Between these areas, the sound volume will be interpolated between normal
gain and outergain.

Parameters:
innerangle specifies the inner cone.

outerangle specifies the outer cone.

outergain specifies the gain outside the outer cone.

void openalpp::SourceBase::Unlink (const ALuint name) throw (Name-
Error)

Unlink this source from another.

Parameters:
name is the name of the source to unlink.

void openalpp::SourceBase::Unlink (const SourceBase & source)
throw (NameError)

Unlink this source from another.

22 B-22

OpenAL++ - An object oriented toolkit for real-time spatial sound

Parameters:
source is the source to unlink.

The documentation for this class was generated from the following file:

• sourcebase.h

B.9 openalpp::GroupSource Class Reference

Class for group sources.
#include <groupsource.h>

Public Methods

• GroupSource (float x=0.0, float y=0.0, float z=0.0) throw (Name-
Error)

Constructor.

• void Play () throw (InitError,FileError)

Same as SourceBase::Play (p. 13), except that this mixes the sources
in the group if it haven’t been done yet.

• void MixSources (unsigned int frequency=22050) throw (InitError,File-
Error,FatalError,ValueError,MemoryError)

Mix all added sources into one.

• ALuint IncludeSource (Source ∗source) throw (ValueError)

Includes a source in the group.

• void ExcludeSource (const Source &source) throw (NameError)

Removes a source from the group.

• void ExcludeSource (ALuint source) throw (NameError)

Removes a source from the group.

• GroupSource (const GroupSource &groupsource)

Copy constructor.

• ∼GroupSource ()

B-23 23

Tomas Hämälä

Destructor.

• GroupSource & operator= (const GroupSource &groupsource)

Assignment operator.

B.9.1 Detailed Description

Class for group sources.
Used for mixing together several sources before they are played. This

can be used to play more sounds with less processing power. Of course the
prob lem is that the sources cannot be moved separately.

Constructor & Destructor Documentation

openalpp::GroupSource::GroupSource (float x = 0.0, float y = 0.0,
float z = 0.0) t hrow (NameError)

Constructor.
Creates the group source at the specified position.

Parameters:
x x coordinate.

y y coordinate.

z z coordinate.

Member Function Documentation

void openalpp::GroupSource::ExcludeSource (ALuint source) throw
(NameError)

Removes a source from the group.
This will of course require the remaining sources to be mixed again.

Parameters:
source is the identifier of the source to exclude.

void openalpp::GroupSource::ExcludeSource (const Source & source)
throw (NameError)

Removes a source from the group.
This will of course require the remaining sources to be mixed again.

Parameters:
source is the source to exclude.

24 B-24

OpenAL++ - An object oriented toolkit for real-time spatial sound

ALuint openalpp::GroupSource::IncludeSource (Source ∗ source)
throw (ValueEr ror) Includes a source in the group.

Returns an identifier that can be used as an argument to Exclude-
Source() (p. 24). This identifier is also the OpenAL name for the included
source.

Parameters:
source is (a pointer to) the source to include.

Returns:
identifier for the source.

void openalpp::GroupSource::MixSources (unsigned int frequency
= 22050) throw (InitError,FileError,FatalError,ValueError,Memory-
Error)

Mix all added sources into one.
This function will be called by Play() (p. 23), if sources have been in-

cluded since the last time MixSamples() was called, so if you want the
source to start playing as fast as possible after the Play() (p. 23)-call, Mix-
Sources() (p. 25) should be called separately

Parameters:
frequency is the frequency that will be used when mixing.

The documentation for this class was generated from the following file:

• groupsource.h

B.10 openalpp::Source Class Reference

Class for ”normal” sources.
#include <source.h>

Public Methods

• Source (float x=0.0, float y=0.0, float z=0.0)

Constructor.

• Source (const char ∗filename, float x=0.0, float y=0.0, float z=0.0)

Constructor.

• Source (const Sample &buffer, float x=0.0, float y=0.0, float z=0.0)

Constructor.

B-25 25

Tomas Hämälä

• Source (const Stream &stream, float x=0.0, float y=0.0, float z=0.0)

Constructor.

• Source (const Source &source)

Copy constructor.

• ∼Source ()

Destructor.

• void SetSound (const char ∗filename)

Create a buffer for the source and load a file into it.

• void SetSound (const Sample &buffer)

Sets a new buffer for the source.

• void SetSound (const Stream &stream)

Sets a new (streamed) buffer for the source.

• const SoundData & GetSound () const

Gets the buffer associated with the source.

• void Play (const char ∗filename)

Play a file on the source.

• void Play (const Sample &buffer)

Play a buffer on the source.

• void Play (const Stream &stream)

Play a stream on the source.

• void Play ()

Play this source.

• void Stop ()

Stop this source.

26 B-26

OpenAL++ - An object oriented toolkit for real-time spatial sound

• bool IsStreaming ()

Check if the source is streaming.

• Source & operator= (const Source &source)

Assignment operator.

B.10.1 Detailed Description

Class for ”normal” sources.
This is used for standard OpenAL sources, whether streaming or not.

Constructor & Destructor Documentation

openalpp::Source::Source (float x = 0.0, float y = 0.0, float z = 0.0)
Constructor.
Creates the source with the specified position.

Parameters:
x x coordinate.

y y coordinate.

z z coordinate.

openalpp::Source::Source (const char ∗ filename, float x = 0.0, float
y = 0.0, flo at z = 0.0)

Constructor.
Creates the source and a buffer with the specified file.

Parameters:
filename is the name of the file.

openalpp::Source::Source (const Sample & buffer, float x = 0.0,
float y = 0.0, f loat z = 0.0)

Constructor. Creates the source with the specified buffer.

Parameters:
buffer is the buffer to use.

openalpp::Source::Source (const Stream & stream, float x = 0.0,
float y = 0.0, f loat z = 0.0)

Constructor.
Creates the source with the specified stream.

Parameters:
stream is the stream to use.

B-27 27

Tomas Hämälä

Member Function Documentation

const SoundData& openalpp::Source::GetSound () const
Gets the buffer associated with the source.

Returns:
the buffer.

bool openalpp::Source::IsStreaming ()
Check if the source is streaming.

Returns:
true if the source is streaming, false otherwise.

void openalpp::Source::Play ()
Play this source.
This is only here, because the above Play(...) hides SourceBase::Play()

(p. 13) Reimplemented from openalpp::SourceBase (p. 13).

void openalpp::Source::Play (const Stream & stream)
Play a stream on the source.
This will change the source’s buffer.

Parameters:
stream is the stream to play.

void openalpp::Source::Play (const Sample & buffer)
Play a buffer on the source.
This will change the source’s buffer.

Parameters:
buffer is the buffer to play.

void openalpp::Source::Play (const char ∗ filename)
Play a file on the source.
This will change the source’s buffer.

Parameters:
filename is the name of the file to play.

void openalpp::Source::SetSound (const Stream & stream)
Sets a new (streamed) buffer for the source.
The source should not be playing when doing this.

Parameters:
stream is the new buffer.

28 B-28

OpenAL++ - An object oriented toolkit for real-time spatial sound

void openalpp::Source::SetSound (const Sample & buffer)
Sets a new buffer for the source.
The source should not be playing when doing this.

Parameters:
buffer is the new buffer.

void openalpp::Source::SetSound (const char ∗ filename)
Create a buffer for the source and load a file into it.
The source should not be playing when doing this.

Parameters:
filename is the name of the file.

void openalpp::Source::Stop ()
Stop this source.
This is needed here for streaming sources...
Reimplemented from openalpp::SourceBase (p. 13).
The documentation for this class was generated from the following file:

• source.h

B.11 openalpp::SoundData Class Reference

Base class for sound data.
#include <sounddata.h>

Public Methods

• ALuint GetAlBuffer () const

Get the OpenAL name for the buffer.

• SoundData () throw (NameError,InitError)

Constructor.

• SoundData (const SoundData &sounddata)

Copy constructor.

• ∼SoundData ()

Destructor.

• SoundData & operator= (const SoundData &sounddata)

Assignment operator.

B-29 29

Tomas Hämälä

Protected Attributes

• SoundBuffer ∗ buffer

Handles generation and deletion of OpenAL buffers correctly.

• ALuint buffername

OpenAL name for the buffer.

B.11.1 Detailed Description

Base class for sound data.

Member Function Documentation

ALuint openalpp::SoundData::GetAlBuffer () const
Get the OpenAL name for the buffer.

Returns:
the OpenAL name.

The documentation for this class was generated from the following file:

• sounddata.h

B.12 openalpp::Sample Class Reference

Class for loading sampled files.
#include <sample.h>

Public Methods

• Sample (const char ∗filename) throw (FileError)

Constructor.

• Sample (const Sample &sample)

Copy constructor.

• std::string GetFileName () const

Get file name of loaded file.

30 B-30

OpenAL++ - An object oriented toolkit for real-time spatial sound

• Sample & operator= (const Sample &sample)

Assignment operator.

B.12.1 Detailed Description

Class for loading sampled files.

Constructor & Destructor Documentation

openalpp::Sample::Sample (const char ∗ filename) throw (FileError)
Constructor.

Parameters:
filename is name of file to load.

Member Function Documentation

std::string openalpp::Sample::GetFileName () const
Get file name of loaded file.

Returns:
file name.

The documentation for this class was generated from the following file:

• sample.h

B.13 openalpp::Stream Class Reference

Base class for NetStream (p. 34) and InputDevice (p. 33) .
#include <stream.h>

Public Methods

• Stream () throw (NameError)

Default constructor.

• Stream (const Stream &stream)

Copy constructor.

• Stream & operator= (const Stream &stream)

B-31 31

Tomas Hämälä

Assignment operator.

• ∼Stream ()

Destructor.

• void Record (ALuint sourcename)

Start recording.

• void Stop (ALuint sourcename)

Stop recording.

Protected Attributes

• SoundBuffer ∗ buffer2

For double-buffering of sounds.

• StreamUpdater ∗ updater

B.13.1 Detailed Description

Base class for NetStream (p. 34) and InputDevice (p. 33) .
Used for audio streams.

Member Function Documentation

void openalpp::Stream::Record (ALuint sourcename)
Start recording.
I.e. start copying data to buffers.

Parameters:
sourcename is the (OpenAL) name of the source.

void openalpp::Stream::Stop (ALuint sourcename)
Stop recording.

Parameters:
sourcename is the (OpenAL) name of the source.

The documentation for this class was generated from the following file:

• stream.h

32 B-32

OpenAL++ - An object oriented toolkit for real-time spatial sound

B.14 openalpp::InputDevice Class Reference

Class for handling input devices, like microphones.
#include <inputdevice.h>

Public Methods

• InputDevice ()

Constructor.

• InputDevice (int device, unsigned int samplerate, unsigned int buffer-
size=1024, SampleFormat format=Mono16)

Constructor.

• InputDevice (const InputDevice &input)

Copy constructor.

• InputDevice & operator= (const InputDevice &input)

Assignment operator.

• ∼InputDevice ()

Destructor.

B.14.1 Detailed Description

Class for handling input devices, like microphones.

Constructor & Destructor Documentation

openalpp::InputDevice::InputDevice (int device, unsigned int sam-
plerate, unsigned int buffersize = 1024, SampleFormat format =
Mono16)

Constructor.

Parameters:
device is the device to open. -1 for default input.

samplerate is the desired sample rate.

buffersize is the desired buffer size.

format is the desired sample format.

B-33 33

Tomas Hämälä

The documentation for this class was generated from the following file:

• inputdevice.h

B.15 openalpp::NetStream Class Reference

Class for handling streams through sockets.
#include <netstream.h>

Public Methods

• NetStream (ost::UDPSocket ∗socket, ost::TCPStream ∗controlsocket=NULL)

Constructor.

• NetStream (ost::UDPSocket ∗socket, SampleFormat format, un-
signed int frequency, unsigned int packetsize)

Constructor.

• NetStream (const NetStream &stream)

Copy constructor.

• ∼NetStream ()

Destructor.

• NetStream & operator= (const NetStream &stream)

Assignment operator.

B.15.1 Detailed Description

Class for handling streams through sockets.
Preliminary tests indicate that packets smaller than ca 1 kb should not

be used (tests were done with Mono8, 11025 Hz).

Constructor & Destructor Documentation

openalpp::NetStream::NetStream (ost::UDPSocket ∗ socket, ost::TCPStream
∗ controlsocket = NULL)

Constructor.

34 B-34

OpenAL++ - An object oriented toolkit for real-time spatial sound

Parameters:
socket is the socket to stream data through.

controlsocket is an (optional) TCPStream that can be used to send
information about the stream. The constructor will begin with try-
ing to read SampleForm at, frequency, and packetsize. The sender
can also use the control socket to send ”EXIT” when it’s run out of
data to send. If this parame ter is not given, defaults will be used
(format=Mono8, frequency=11025, packetsize=1024).

openalpp::NetStream::NetStream (ost::UDPSocket ∗ socket, Sample-
Format format , unsigned int frequency, unsigned int packetsize)

Constructor.

Parameters:
socket is the socket to stream data through.

format is the format the data will be in.

frequency is the frequency of the sound.

packetsize is the size of the packets the sound will be sent in.

The documentation for this class was generated from the following file:

• netstream.h

B.16 openalpp::Error Class Reference

Error (p. 35) class for throwing.
#include <error.h>

Public Methods

• Error ()

Constructor.

• Error (const char ∗description)

Constructor.

• Error (const Error &error)

Copy constructor.

• std::ostream & Put (std::ostream &stream) const

Function used for printing.

B-35 35

Tomas Hämälä

Protected Attributes

• std::string errorstring

A description of the error.

B.16.1 Detailed Description

Error (p. 35) class for throwing.
The descendants of this class are different error types, and the exact

error can be displayed by using ”cout << error;” where error is an instance
of Error (p. 35) (or one of its descendants)

Constructor & Destructor Documentation

openalpp::Error::Error () [inline]

Constructor.
Will use a default error message. openalpp::Error::Error (const char

∗ description) [inline]

Constructor.

Parameters:
description is error message to use.

Member Function Documentation

std::ostream& openalpp::Error::Put (std::ostream & stream) const
Function used for printing.

Parameters:
stream is stream to print to

Returns:
the stream with the error message appended.

The documentation for this class was generated from the following file:

• error.h

B.17 openalpp::FatalError Class Reference

Fatal error.
#include <error.h>

36 B-36

OpenAL++ - An object oriented toolkit for real-time spatial sound

Public Methods

• FatalError (const char ∗description)

Constructor.

B.17.1 Detailed Description

Fatal error.

Caused by error in implementation, corrupted memory etc.

Constructor & Destructor Documentation

openalpp::FatalError::FatalError (const char ∗ description) [inline]

Constructor.

Parameters:
description is error message to use.

The documentation for this class was generated from the following file:

• error.h

B.18 openalpp::FileError Class Reference

File error.

#include <error.h>

Public Methods

• FileError (const char ∗description)

Constructor.

B.18.1 Detailed Description

File error.

Caused by wrong file permissions, missing files etc.

B-37 37

Tomas Hämälä

Constructor & Destructor Documentation

openalpp::FileError::FileError (const char ∗ description) [inline]

Constructor.

Parameters:
description is error message to use.

The documentation for this class was generated from the following file:

• error.h

B.19 openalpp::InitError Class Reference

Init error.
#include <error.h>

Public Methods

• InitError (const char ∗description)

Constructor.

B.19.1 Detailed Description

Init error.
Caused by trying to do actions without proper initialization.

Constructor & Destructor Documentation

openalpp::InitError::InitError (const char ∗ description) [inline]

Constructor.

Parameters:
description is error message to use.

The documentation for this class was generated from the following file:

• error.h

B.20 openalpp::MemoryError Class Reference

Memory error.
#include <error.h>

38 B-38

OpenAL++ - An object oriented toolkit for real-time spatial sound

Public Methods

• MemoryError (const char ∗description)

Constructor.

B.20.1 Detailed Description

Memory error.

Caused by insufficient memory etc.

Constructor & Destructor Documentation

openalpp::MemoryError::MemoryError (const char ∗ description)
[inline]

Constructor.

Parameters:
description is error message to use.

The documentation for this class was generated from the following file:

• error.h

B.21 openalpp::NameError Class Reference

Name error.

#include <error.h>

Public Methods

• NameError (const char ∗description)

Constructor.

B.21.1 Detailed Description

Name error.

Caused by invalid (OpenAL) names.

B-39 39

Tomas Hämälä

Constructor & Destructor Documentation

openalpp::NameError::NameError (const char ∗ description) [inline]

Constructor.

Parameters:
description is error message to use.

The documentation for this class was generated from the following file:

• error.h

B.22 openalpp::ValueError Class Reference

Value error.
#include <error.h>

Public Methods

• ValueError (const char ∗description)

Constructor.

B.22.1 Detailed Description

Value error.
Caused by values out of range etc.

Constructor & Destructor Documentation

openalpp::ValueError::ValueError (const char ∗ description) [inline]

Constructor.

Parameters:
description is error message to use.

The documentation for this class was generated from the following file:

• error.h

40 B-40

OpenAL++ - An object oriented toolkit for real-time spatial sound

C A simple example

#include <alpp/alpp.h>

int main() {

// Create a source, and load the file example.wav into it.

Source source(‘‘example.wav’’);

// Move the source to be in front of, and a little to the

// right of the listener.

source.SetPosition(5,0,-15);

// Play the loaded sound in the source.

source.Play();

sleep(5);

// Create another source.

Source source2;

// Move it to be to the left of the listener.

source2.SetPosition(-10,0,0);

// Play the file example2.wav in the source.

source2.Play(‘‘example2.wav’’);

sleep(5);

return 0;

}

C-1 1

